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This paper extends the kinetic theory of irreversible polymerization 
(Smoluchowski's equation) by including fragmentation effects in such a way, 
that the most probable (equilibrium) size distribution from the classical 
polymerization theories is contained in our theory as the stationary distribution. 
The time-dependent cluster size distribution c~(a(t)) in Flory's polymerization 
models RA I and AsRBg, expressed in terms of the extent of reaction a, has the 
same canonical form as in equilibrium, and the time dependence of a(t) is deter- 
mined from a macroscopic rate equation. We show that a gelation transition 
may or may not occur, depending on the value of the fragmentation strength, 
and, in case a phase transition takes place, We give Flory- and Stockmayer-type 
postgel distributions. 

KEY WORDS: Reversible polymerization; coagulation; fragmentation; RA s 
and AfRBg models; gelation; clustering; aggregation. 

1. INTRODUCTION 

The available kinetic theory of polymerization does not contain the 
equilibrium theory of Flory (1) and Stockrnayer (z) as a limiting case for large 

values of the time, due to absence of fragmentation effects. As clusters are 
growing in size, break-up processes become more important,  and the irrever- 
sible coagulation reactions should be replaced by reversible coagulation- 

fragmentation reactions. In Smoluchowski 's  theory of (irreversible) 
coagulation ~3'4) all clusters coalesce in the course of time into an infinite 

aggregate, and the limiting concentrat ion for a given cluster size vanishes. 

Thus nontrivial  stat ionary size distributions e k at arbitrarily prescribed 
values of the extent of reaction a are excluded, where a represents the 
fraction of reacted groups. The present paper extends the kinetic theory of 
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polymerization by including fragmentation in such a way, that the solutions 
of the Flory-Stockmayer (FS) theory appear as the stationary solutions of 
the theory. 

The present theory of clustering describes reaction limited aggregation 
processes (RLA), and it is most instructive to quote Flory (5) on the 
limitations of the rate equation approach: "If  the reaction is too fast or 
mobility too low to allow maintainance of the equilibrium concentration of 
pairs of reactants adjacent to one another in the liquid, then diffusion will 
become the rate-controlling step. Condensation polymerization generally 
proceeds by reactions of moderate rate such that no more than about one 
bimolecular collision in 1013 between reactants is fruitful. Within the interval 
of time for this number of collisions, considerable diffusion of the molecule 
(...) may occur." 

In diffusion-limited aggregation (DLA) or ballistic models of 
aggregation, the amount of time required for the reactants to approach each 
other is much larger than the time required for the bonding reaction (high 
sticking probability). Here a cluster grows by addition of a single 
particle ~6-9) or of another cluster, (1~ which approach each other along 
diffusive or ballistic trajectories and have a high sticking probability between 
1 and 1/10. (12) The main results have been obtained by computer 
simulations. 

In this paper we restrict ourselves to aggregation or polymerization 
processes that are limited by reaction rates and that are reversible. 

Reversible polymerization is the combined process of formation and 
breakage of chemical bonds in a system of reacting polymers. These 
processes may be symbolized by the reversible reactions a i + a j ~ a i +  J 
( i , j  = 1, 2,...) where a k denotes a cluster (k-mer), consisting of k monomeric 
units a 1. The forward rate constants Kq describe the bimolecular coagulation 
process. The unimolecular fragmentation process is described by the 
backward rate constants F~j. Other reactions, such as triple collisions and 
break-up into many particles are assumed to be absent. 

In a statistical description of reversible polymerization one is interested 
in the concentrations of k-mers (k = 1, 2,...), also referred to as the cluster 
size distribution ek(t ). Its time evolution is given by the following infinite set 
of coupled nonlinear rate equations: 

(1.1) 
i + j = k  j=  1 

We are specially interested in the solution of (1.1) evolving from the 
monodisperse initial distribution 

ck(O ) = M6~l = 6~1 (1.2) 
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where M is the total concentration of monomers initially put into the system. 
For convenience the unit of volume will be chosen such that M = 1. 

The rate constants in Eq. (1.1) depend on the polymerization model 
under consideration. In Smoluehowski's coagulation equation break-up 
processes are absent, so that F 0. = 0. In this paper we consider the kinetics of 
Flory's polymer models RAf and AIRBu, where RA I units carry f A  groups, 
forming A-A bonds, and AIRBg units carry f A groups and g B groups, 
forming A - B  bonds. The formation of bonds between finite polymers is 
restricted by the same basic assumptions as used in the statistical theory of 
Flory and Stockmayer: (i) polymers cannot form cross-links, so that 
eyclization does not take place (ii) identical chemical groups have a priori 
equal reactivity, independent of the size of the polymer to which they are 
attached. 

As a consequence of assumption (i) the polymers form branehed 
treelike structures. An exception are the models RA 2 and ARB, which form 
linear chains. As a consequence of assumption (ii), the bonding process in 
the FS theory may be thought of as a random process: i.e., an A group 
selected at random is bonded with a probability a and bonding probabilities 
of any two A groups are independent. Here a equals the extent of reaction, 
i.e., the total fraction of reacted A groups. 

Using Stockmayer's method ~2) c~(a) is found as the most probable 
solution consistent with a prescribed number of units and a prescribed 
number of clusters or, equivalently, a prescribed value of a, i.e., 

M= l=~kc~,  ~ = ~ c  k (1.3) 
k k 

Consequently it has the general form 

C k = A W  k ~ k / k !  =__ A N k ~  k (1.4) 

where the amplitude A and the fugacity ~ are Lagrange multipliers deter- 
mined by the prescribed values of M and r The combinatorial factor w k 
represents the number of ways in which a cluster of size k can be constructed 
out of its constituent units. For later convenience the combination wJk! will 
be denoted by N~. 

For the RA I model these numbers N k have been calculated already by 
Stockmayer: 

N~ = f k [ ( f  -- 1)k]!/[(f  -- 2)k + 2]]k! (1.5) 

For the AfRBg model these numbers can be found in Refs. 13, 14, and 15. 
The explicit form of A and ~ for the RAf and AfRBg model can be found in 

822/37/3-4-3 
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[14-17]. The FS theory is static by nature since its basic variable is not 
time, but the extent of reaction a. 

In a nonequilibrium state a(t) is changing in time, and its time depen- 
dence is described by the macroscopic rate equation for the total concen- 
tration of reacted A groups. For the polymer models ARB, ARB 2, RA 3, Ziff 
has observed t4) the interesting property that the solutions ck(t ) of 
Smoluchowski's equation for monodisperse initial conditions keep the 
canonical form of the most probable FS solutions ek(a(t)). 

The purpose of this paper is to extend Ziff's observation to coagulating 
systems that also allow break-up processes, and to present a kinetic theory of 
reversible polymerization. To carry out this program one needs to construct 
the appropriate expressions for Kij and Fij. Consider first the AIRBg model. 
Since the bonding process is considered to be a random process the 
coagulation coefficient K u is proportional to the number of possible AB 
reactions of free groups on an i-mer with those on a j-met. The coefficient of 
proportionality is the rate constant for formation of a single A - B  bond, 
which may be set equal to unity by choosing appropriate units of time. 
Thus ~4,18) 

Kij(AIRBg ) = s i ( f )  sj(g) + si(g ) s i ( f )  (1.6) 

with 

sk(f)  = ( f  - 1)k + 1 (1.7) 

where sk(f)  and sk(g ) are, respectively, the number of unreacted A and B 
groups on a k-incr. By similar arguments one finds for the RA I model 

Kij(RAI) = o, ( f )  a j ( f )  (1.8) 

where oh(f) is the number of unreacted A groups on a k-mer: 

oh(f)  = ( f - -  2)k + 2 (1.9) 

The construction of the fragmentation coefficients F u for the above polymer 
models is one of the subjects of this paper, and wil be dealt with in Section 2. 

In general, little is known about the solution of the kinetic equation 
(1.1) containing the combined effects of coagulation and fragmentation. 
Existence and uniqueness of solutions for the continuous analog of 
equation(1.1) have been proved by Melzak (19) under the condition of 
uniformly bounded coagulation and fragmentation rates. Under less stringent 
conditions, allowing also for gelation to take place, an existence proof for 
solutions of the discrete equation (1.1) has recently been given by Spouge. (z~ 
For the linear chain model ARB, where F;j equals a constant, F o. = 2, the 
kinetic equation(1.1) has been solved by Blatz and Tobolsky (21) for 
monodisperse initial conditions, and by Aizenman and Bak (22) and Ernst (z3) 
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for general initial conditions. Smoluchowski's equation with Fii = 0 and 
Kij = A + B(i + j)  + Cij can be solved analytically (for a review, see R~ef. 3). 
Barrow ~24) has combined the above coagulation kernel Kii with a constant 
fragmentation kernel Fig = 2. He only solved the moment equation for the 
total number of clusters,/t(t) = ~ ek(t), with an arbitrary initial condition, 
and showed that the kinetic equation (1.1) admits nontrivial stationary 
solutions only when B = C = 0 and 2 4= 0 (a case, already completely solved 
by Aizenman and Bak). Srivastava t25) considered coagulation processes 
a i + aj ~ ai+ j with Kij = A + B(i + j ) +  Cij and Fij  = 0 in combination with 
the bimolecular fragmentation reaction a t + aj ~ (i + j)a~, and solved for the 
total number of clusters with an arbitrary initial condition. 

Another approach to the kinetics of reversible aggregation has been 
followed by Perelson and collaborators. ~26) These authors start from the 
most probable (FS) distribution ck(a ) for a particular aggregation model, 
and construct the time-dependent cluster size distribution ek(a(t)) by 
assuming that the time dependence of a(t) is determined by the macroscopic 
rate equations with coagulation and fragmentation included. In this paper the 
relation between the above approach and the solution of the kinetic 
equation (1.1) with appropriate coagulation and fragmentation rates Will be 
established. 

The plan of this paper is as follows. Section 2 gives the construction of 
the fragmentation coefficients. The pregelation stage, the gelation transition 
and the postgelation stage of the RAf  model are presented, respectively, in 
Sections 3, 4, and 5. Section 6 is devoted to some comments. In Appendix A 
it is shown that the size distributions, constructed from probabilistic 
arguments, are indeed solutions of the kinetic equation. In Appendix B we 
summarize the corresponding results for the AfRBg model. 

2. FRAGMENTATION COEFFICIENTS Ftl 

In this section we describe the general procedure for constructing 
fragmentation coefficients Fig for k-mer break-up into i-mers and j-mers with 
k = i § j for systems starting from the monodisperse initial distribution. In 
doing so we also determine the stationary size distribution ck(oo ) for a given 
total mass per unit volume M. 

Suppose that the coagulation kernel K u is given for the polymer model 
under consideration, then we impose the following two requirements on F~s : 

(i) The normalization condition: which requires that the total fragmen- 
tation rate of a k-mer be proportional to the number of bonds, i.e., 

1 
-~  ~ F i s= ,~ (k -  1) (2.1) 

i+j=k 
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The a priori equal reactivity of the functional groups implies that all (k -- 1) 
bonds in a k-mer are equivalent. In particular all bonds are equally 
breakable, and the total rate of k-mer break-up, 1 ~F i~  ' is proportional to 
the number of bonds. The constant of proportionality ). represents the 
fragmentation strength. 

(ii) The detailed balance condition: which requires the existence of 
stationary solutions to Eq. (1.1). In a stationary state the number of k-mers 
lost to the i- and j-mers through fragmentation is exactly compensated by the 
number of k-mers formed out of i- and j-mers: 

Ftjci + ~( ~ ) = Kiici(  ~ ) cj( oo ) (2.2) 

The detailed balance condition guarantees the existence of a stationary (as 
yet unknown) size distribution ck(~ ), and imposes a severe restriction on the 
form of F,.j, as will be seen below. 

Once Kij is given, the requirements (i) and (ii) uniquely determine both 
the equilbrium solutions ck(~ ) and the fragmentation kernel Fij.. By 
combination of (2.1) and (2.2), the stationary solutions may be expressed in 
terms of the monomer concentration c1(~)  through the recursion relation 

1 
;t(k- 1)ek(oo)= T S~ K ~ j c ~ ( ~ ) c j ( ~ )  (2.3) 

i+ j=k  

It can be put into the equivalent form 

1 
( k -  1)N k =-~- ~. KejNiNj (N, = 1) (2.4) 

i+j=k  

after writing the stationary size distribution in the form 

ck(oo ) = 2~kNk = Z '-k(el(OO ))k N k (2.5) 

Once the solution N k of the recursion relation (2.4) is found, the equilibrium 
solution is known since the parameter ~ or, equivalently, c 1 ( ~  ), is fixed 
through the total mass per unit volume, 2 i.e., M = 1 = ~ k c k ( ~  ). 

The second equality in (2.5) also allows us, using the analysis of Cohen 
and Benedek, ~27) to identify the fragmentation strength ~ as ). -=- exp(e/k~ T), 
where e is the Gibbs free energy of a single chemical bond, T the absolute 
temperature and k~ is Boltzmann's constant. The kinetic theory of 
irreversible polymerization with Fo.= 0 is recovered for e ~ - ~  so that 

-~ 0, corresponding to infinitely strong bonds. 

z Here it is a s sumed  tha t  all m as s  is conta ined in finite po lymers  (sol particles).  Later  we 
discuss the complications arising when a finite fraction of all mass is contained in one 
infinite cluster (gel). 
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Finally the fragmentation kernel follows from (2.5) and (2.2) as 

Fit = 2 K i t N i N J N i  + t (2.6) 

Thus the kernel Fit has been expressed in terms of the coagulation kernel Kit 
and the factors N k. 

The quantities w k defined by w~ defined by w k = k ! N  k have a simple 
combinatorial interpretation, w k represents the number of distinct ways in 
which a k-mer can be constructed out of k monomeric units, assuming that 
units and functional groups are distinguishable. This can be seen as follows. 
In terms of wk the recursion relation (2.4) takes the following form: 

1 (k - -1 )wk=-~-  ~ ,k  ( k  . + j =  i ) Kuwiwj (w 1 -- 1) (2.7) 

According to the right-hand side of (2.7) one may choose i units out of k 
(distinguishable) units in (~) different ways in order to build i- and j-reefs 
(which may be constructed in wi w  j different ways). Since functional groups 
are distinguishable also, such i- and j-mers may be joined in K u ways. 
Finally every k-mer configuration is formed ( k -  1) times, since each of its 
( k -  1) bonds joins some combination of an i and a j cluster and each of 
these ( k -  1) combinations has been counted as distinct. A similar inter- 
pretation of the recursion relation (2.7) has been given by Spouge. (28) The 
recursion relation (2.7) reflects the two basic assumptions of FS theory, 
since it is assumed that clusters are acyclic, and that every combination of 
two functional groups in the system is equally probable, requiring 
distinguishability of all functional groups in the system. 

There is also a combinatorial interpretation of Fg i in Eq. (2.6). This 
equation states that the number of distinct ways for k-mers to break up into 
i- and j-reefs (Fuwi+J,~)  equals the number of bonds between an i and a j  
cluster in k-met configurations ( ( ~ ) K u w i w j ) .  Thus one finds that the 
combination of the normalization and detailed balance conditions (2.1-2.2) 
imposes on F~j the requirement that all fragmentation processes a k--~ a i + aj 

occur at a rate proportional to the numbers of possible bonds. The constant 
of proportionality equals 2 = e xp (e / k  B T) in all cases. 

The interpretation of Fij also shows that the expression (2.6) for the 
fragmentation kernel is valid only when at every instant and for every 
polymer length the polymers are uniformly distributed over the various 
configurations. For systems starting from the monodisperse distribution this 
condition is satisfied since in this case the bonding process may be thought 
of as random. The complications arising for systems starting from more 
general initial conditions will be discussed in Section 6. 
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3. PREGELATION SOLUTIONS 

In this section we construct the time-dependent size distribution before a 
possible gelation transition occurs and show that the solutions obtained in 
this way satisfy the kinetic equation (1.1) with the appropriate coagulation 
and fragmentation coefficients. 

The method of finding time dependent size distributions is an extension 
of the probabilistic method used by Ziff for irreversible polymerization. (4) 

We first consider Flory's RAf  model and construct the size distribution 
ek(a ) for a given extent of reaction a. Since a represents the fraction of 
reacted A groups, it equals the probability that an A group, selected at 
random, has reacted. The size distribution is therefore given as 

Ck(a ) = NkA(a)(~(a))  k 

= ( w J k ! ) ( a / f )  k- 1(I - a) ~ (3.1) 

where a k is the number of unreacted A groups on a k-mer with ak( f )  defined 
in (1.9). This may be seen as follows: The probability that a unit selected at 
random is contained in a k-mer equals kCk(a ), on account of our choice of 
the unit of volume (1.2-1.3). On the other hand it equals the probability for 
a specific k-mer configuration, (or/f)k--l(1--a)~ multiplied by kWk, 
which is the number of distinct ways for choosing a unit in some specific 
configuration. Here ( a / f )  k- 1 gives the probability that ( k -  1) A groups 
have reacted with a particular group out of the f A ' s  on another unit, and 
(1 - a) "k is the probability for a k unreacted A groups. Finally l /k!  gives the 
probability that a configuration corresponds to a particular permutation of 
the k (distinguishable) units. The size distribution (3.1) is identical to the 
well-known Flory-Stockmayer (FS)distribution (1'2) for the RAy model. The 
size distribution (3.1) has been constructed to satisfy the constraints (1.3). 3 
The definition of a implies 

a = ~ 2(k -- 1 ) c k / ~ J k e  k = (Z/f)(1 - -p )  (3.2) 
o /  I k 

Next we determine the time dependence of a(t), where a(t) can be 
obtained from the macroscopic rate equation for the concentration of free A 
groups. As the total concentration of units equals unity (M = 1), we have for 
the total concentration of A groups, [.4] = f ,  and for the concentration of 
reacted and free A's respectively [.4 R] = f a  and [ A V ] = f ( 1 - - a ) .  The 

3 The constraint Y~ kc k = M can only be satisfied as long as a is smaller than some critical 
value, as we shall see below. 
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assumption of equal a priori reactivities of all A groups implies the rate 
equation 

d 
d t  [ARI = [AFI2 - 2JAR] (3.3) 

where ), is the ratio of the rate constants of formation (coagulation) and 
breakage (fragmentation) of A-A  bonds, which have concentration ~[AR]. 
We recall that the rate constant for formation of A-A bonds was set equal to 
unity by choosing appropriate units of time. By Arrhenius' law (29) the ratio 2 
of rate constants equals the Boltzmann factor 2 = exp(e/k B T), where e is the 
Gibb's free energy of a single A-A bond. 

The rate equation (3.3) in terms of a(t) reads 

d = f ( 1  - a) 2 - ha (3.4) 

to be solved subject to the initial condition a(0) = 0. This corresponds to the 
monodisperse initial condition ek(a(O))= 6kl, as can be verified from (3.1). 
Its solution reads 

a(t) = ao(1 -- e-~t)/(1 -- ct~e at) (3.5) 

where a 0 = a(oo) is the stationary solution of (3.4): 

a 0 = [2f + 2 - -A] /2 f  (3.6a) 

with 

A = [2 2 + 4/'2] 1/2 (3.6b) 

In the absence of fragmentation (2 = 0 )  a(t) in (3.5) reduces to a( t )= 
f t / (1  + f t )  with a ( o o ) = a 0 =  1. Thus, only trivial equilibrium solutions 
ek(a(oo)) are found, in which the size distribution is vanishing for any finite 
k value. As soon as fragmentation occurs, a 0 = a ( o o  ) stays smaller than 
unity and the size distribution approaches ek(ao), which are the most 
probable FS solutions for the RA z model at the prescribed extent of 
reaction %.  

After the construction of a time-dependent size distribution ek(a(t)) with 
ek(a(O)) = 6k~, it remains to be shown that ek(a(t)) is indeed a solution of the 
nonlinear kinetic equation(1.1) with the appropriate coagulation and 
fragmentation rate constants. This is done in Appendix A. It is of interest to 
note the proportionality between fragmentation and coagulation terms, i.e., 
Fijei+i = ()~/A)Kijeiej ,  which is a direct consequence of (2.6) and (3.1). It 
states that the rate of k-mer break-up into i- and j-mers (Fijci+j) is propor- 
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tional to the concentration b o. of bonds between i and j clusters, which is 
given by 

bij = Ki jNiNjA  (a)(~(a)) k 

= Nt(~(a))' a f ( f )[A F] (3.7) 

Here we have introduced the concentration of free A groups o n j  mers, which 
is given by [Af] = aj ( f )e j .  The validity of (3.7) can be demonstrated easily, 
since (~ )K i jw iw  J gives the number of distinct ways of forming a bond 
between an i and j cluster, and A(a)(~(a))k/k! equals the probability for a 
specific k-mer configuration. 

Before closing this section we derive the equation of motion for the 
zeroth moment # = ~ e k in the RA s model. By summing Eq. (1.1) over k and 
using (1.8) and (2.1) we obtain 

1 
IA = - ~ .~. [Kijcic J -- Fi]ci+j] 

t , J  

1 
-- 2 ( f - -  2 + 2#)z + 2(1 - -# )  (3.8) 

This moment equation is identical to the macroscopic rate equation (3.4) on 
account of (3.2). In a similar way one obtains the moment equation M = 0 
for the total mass M = Y' ke k. This conservation law is, however, only valid 
as long as no gelation occurs, as will be discussed in the next section. The 
equations of motion for the higher moments, ~ k"e k, in the presence of 
fragmentation processes cannot be expressed in terms of moments only. 

4.  G E L A T I O N  T R A N S I T I O N  

We first investigate the time developement of the size distribution in the 
RAf  model. An important point to note is that ek(a ) in (3.1) reaches a 
maximum at d k = ( k - 1 ) / [ ( f - 1 ) k + l  ]. The quantity d k increases 
monotonically with k to the limiting value a c (critical extent of reaction): 

~ = l / ( f - 1 ) = a  c (4.1) 

as already shown by Flory. ~1) 
In the RA2 model a C = 1, in the RAy model with f > 2 the critical value 

ac < 1, and a(t) may exceed a~. As soon as a(t) > a~, all concentrations 
ek(a(t)) have passed their maximum, and keep decreasing as time progresses, 
since a(t) is an increasing function of time. The sol mass M(a)  = Y~ ke k can 
no longer be conserved, and must be decreasing. At the critical extent of 
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reaction a~ a gelation transition occurs; or, equivalently, gelation occurs at 
the critical time t~, determined by the relation a ( t c ) =  a c. It can be calculated 
from (3.5) as 

tc = A - '  log[ao(1 -- a o a ~ ) / ( a  o --  ac)  ] (4.2) 

However, t~ does not necessarily exist, since the equation a(t~) = a c only has 
a real solution if ac < a 0, as illustrated in Fig. 1. This condition yields the 
following restriction on the fragmentation strength for t~ to be real: 

"]" < '~'max =f(f-- 2 ) 2 / ( f  - 1) (4.3) 

For strong bonds (2 small) gelation always occurs, as is the case in irrever- 
sible polymerization. However, if 2/>).max, i.e., if the Boltzmann factor 2 = 
e x p ( e / k B T  ) becomes too large, the gelation transition is completely 
suppressed and M ( a )  is conserved for all times. Only those ck(a  ) will pass 
through a maximum, for which d~ < a 0. For  larger k values the size 
distribution is monotonical ly increasing for all times. If  2 becomes very 
large, a 0 becomes very small, and hardly any clustering occurs. 

It is instructive to calculate the rate of  change of  the total m a s s , / f / =  
kc k = d ~ k d c J d a .  As long as t < t c or a < ac, the first constraint in 

(1.3) can always be satisfied and 53I= 0. Thus M =  ~ k c  k = 1 is conserved 
for t < t e. However, at a e = fi~ the ratio (Ck ~ d c k / d a ) ~  c becomes independent 

C(, 

C~o(kl 

C~ c 

~o(k2) 

~l  < ~.max 

X2 > Xm~ 

0 tc(X~) 1 D 
t 

Fig. 1. The extent of reaction a in the RA I model (here we have chosen f = 3) as a function 
of time for different values of the fragmentation strength 2. The asymptotic value a0(2 ) may or 
may not exceed the critical extent of reaction a c = 1/(f-- 1), depending on the value of 2. 
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of k, since at the gel point (d~/da),~c = 0. Thus, one finds a nonvanishing 
mass loss rate at ac: 

k 

(1 + a ) 6  f_~__~2 ) 

This result is interpreted as the formation of an infinite cluster (gel). At the 
gel point a cascading growth process occurs by which finite size clusters (sol 
particles) are being lost to the gel. This infinite cluster contains a finite 
fraction G(a) of the total mass in the system, with 

M(a) + G(a) = 1 (4.5) 

since, obviously, units must be contained either in the sol or in the gel. 
The conservation of total mass or total number of units, M, for t < t c 

follows immediately from the kinetic equation after multiplying (1.1) with k, 
summing over k and interchanging the order of summations. At t = t c, 
however, this interchange is no longer allowed, since the sums do not 
converge uniformly. Consider, therefore, the flux 3)/(L) (t) of smaller polymers 
with size k<.L toward larger polymers with size k > L, where M(L)(t)= 
~ =  l kCk(t). The kinetic equation (1.1) yields then 

L 

hiI(L)(t) = -  ~ ~ i{Kijcicj-- Fijci+j} (4.6) 
i = 1  j - L - i + l  

Since the F term is proportional to the K term for monodisperse initial 
conditions i.e., Fijci+ j = (J./A)KuCiCj, we shall restrict our discussion to the 
K term. 

We are interested in the limit of ~;/('~)(t~) as L ~ oo, which is determined 
by the large-k behavior of c k. As long as t < tr or ~(a) < ~(a~) = ~ ,  the size 
distribution is exponentially decreasing [see (3.1), with N k given by (1.5)] 
and the limit vanishes, indicating conservation of total number of units 
contained in the sol. However, at t c and in general: at the critical fugacity, 
the size distribution Ck(a~) decreases algebraically a s  k - 5 / 2  (k-~ 00), (27'30'31) 
and one easily verifies that _~t(L)(t~) has a nonvanishing negative limit as 
L -4 ~ ,  in agreement with the result derived in (4.4). 

5. POSTGELATION SOLUTIONS 

In classical gelation theory there exist various models of a gel. The two 
most prominent ones have been proposed by Flory and by Stockmayer. The 
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time dependence of the size distribution in the postgel stage will also differ 
with the model considered. 

In Flory's interpretation all reactive groups, whether located on a sol 
particle or on the gel remain equally reactive. Since there is a finite fraction 
of all reactive groups on the gel, there is a finite probability for bonding of 
two such groups, leading to cyclic structures. 

In the kinetic interpretation of Stockmayer's (equilibrium) model we 
assume that sol-gel interactions are completely absent. Consequently, the gel 
fraction is increased only by the cascading of sol particles to the gel, 
requiring (see Section 4) the validity of the relation ~( t )= ~c for all t >~ t c. 
This is the condition originally proposed by Stockmayer. 

We first discuss the time dependence of the postgel solutions in 
Stockmayer's picture. Since the fugacity has the fixed value ~c, the relative 
size distribution above the gel point has the same value as at the point of 
gelation, i.e., 

Ck(t ) = A (t)Nk~kc = M( t )  ek(tc) (5.1) 

where M(t)  = 1 -- G(t) = ~ kCk(t ) is the fraction of monomers contained in 
the sol. The time dependence of M(t)  in (5.1) remains to be determined. This 
can be done from the macroscopic rate equation for the concentration of 
clusters in the sol,/z(t) = ~ Ck(t ). Since we assume total absence of sol-gel 
interactions/z can only change through reactions in the sol. This yields for 
the rate of change in the concentration of clusters: 

1 R I /=  - ~[A,e] 2 + 52[A, ] (5.2) 

The first term on the right-hand side accounts for coagulation processes, the 
second for fragmentation processes. The infinite clusters cascading from the 
sol to the gel have zero number concentration at all times, and do not 
contribute to 1i. 

All concentrations in (5.2) depend on time only through M(t )  on 
account of (5.1), i.e., 

/~ = r cM 

[Af] = f (1  -- a~)M (5.3) 

[As R] = f a c M  

where ar  and / ~ =  1 -  �89 are the values of the extent of 
reaction and concentration of clusters at the gel point. The resulting equation 
for the sol mass follows from (5.2) and (5.3) as 

= a)~M -- bM 2 (5.4) 
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where 

a =fac/2t~ c = f / ( f -  2) 
(5.5) 

b =f2 (1  - ac)/2/a c = f E ( f  - 2 ) / ( f -  1) 

The solution of interest obeys the initial condition M(t~) = 1 and reads 

M(t )= l b ( -~-da) + 1 b -1 (5.6) 

with t~ given in (4.2). 
Equations (5.1) and (5.6) represent the time-dependent postgel size 

distribution c~(t), based on Stockmayer's picture of the postgel stage. One 
can verify by direct substitution that the size distribution ck(t ) in (5.1) is an 
exact solution of the kinetic equation (1.1) in the RA I model with the 
appropriate rate constants of coagulation (1.8) and fragmentation (2.6). 
Furthermore the pregel distribution (3.1) with (3.4) and the postgel 
distribution (5.1) with (5.4) determine a function which is continuously 
differentiable at t~. It is, therefore, the global solution of the kinetic equation 
corresponding to monodisperse initial conditions. 

In case the chemical bonds are very strong 0 ~ = 0), the size distribution 
given by (5.1) and (5.6) reduces to the solution of the RA I model for irrever- 
sible coagulation, as given in Ref. 15, i.e., 

ch(t ) = Ck(tc)/[1 + b(t -- t~)] (5.7) 

where t~ = 1 / [ f ( f -  2)] on account of (4.2) and (3.6) for ~ = 0. 
Finally we remark that the model presented here is in essence, but not 

in detail, identical to the model originaly proposed by Stockmayer. In the 
original equilibrium model it is assumed that the gel is acyclic and that the 
fugacity remains fixed at its critical value {c beyond the gel point. 

However, in the special case of absence of sol-gel interactions anything 
may be assumed concerning intramolecular reactions in the gel, and 
Stockmayer's additional requirement of an acyclic gel appears to be 
irrelevant in this case. 

The last part of this section is devoted to Flory's picture of the gel, and 
the construction of the time dependent postgel size distribution and the 
corresponding kinetic equation. 

In Flory's picture the bonding process is also random in the presence of 
a gel. Thus the extent of reaction a retains the interpretation of the 
probability for an A group to be bonded. Therefore, the size distribution 
t?k(O~ ) of the finite size clusters is for a > a C still given by the same 
expressions (3.1) and (3.5-3.6) as for a ~a~ .  The total fraction of units 
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contained in the sol, Y~ ke~(a) = M(a), is smaller than unity. Since there is a 
finite fraction G(a)= 1 - M ( a )  of all units in the gel, there is also a finite 
probability for any free group in the gel to react with some other free group 
in the gel, thus giving rise to cyclic structures. 

Thus we have constructed the time-dependent size distribution ek(a(t)) 
in the postgel stage, based on Flory's interpretation of the gel. It differs from 
(5.1) with M(t) in (5.6), and is therefore not a solution of the kinetic 
equation (1.1). Does there exist a kinetic equation to which ek(a(t)) in (3.1) 
is a solution? To answers this question we insert ek(a(t)) in (1.1) and correct 
for the mismatch. For the RAy model this leads to the following kinetic 
equation: 

Ok=_ ~1 ~V [Kijcicj--Fijci+j ] -- ~ [Kkjc~ci-F~jck+j ] 
i+j=k  j = l  

-- akCk[A F] + 2akWk(r F] (5.8) 

The calculations are very similar to those given in Appendix A, and will not 
be repeated here. The additional terms on the second line of (5.8) represent, 
respectively, the loss of k clusters due to bonding with the gel and the gain of 
k clusters through break-up of the gel. The additional loss term has an 
obvious probabilistic interpretation in terms of rate equations. The additional 
gain term represents the concentration of bonds bko o in the gel between an 
infinite cluster and a cluster of size k, as may be seen by comparison with 
(3.7), in which [A F] is replaced by [AgF]. Therefore the fragmentation process 
in the gel takes place at a rate proportional to the corresponding concen- 
tration of bonds also. 

6. D I S C U S S I O N  

In this paper we have constructed a kinetic theory of polymerization, 
which incorporates both bonding and break-up, to describe the time 
evolution of the cluster size distribution e~ in a polymerizing system, starting 
from monodisperse initial conditions, ok(0 ) = 6ka. It can, therefore, describe 
a nontrivial equilibrium state. The resulting size distribution, obtained here, 
is the same as in the equilibrium theory of Flory and Stockmayer. Thus we 
have embedded the classical equilibrium theory of polymerization and 
gelation into a kinetic theory. 

The RA I model with f > 2 and the AgRBg model with f > 1 and g > 1 
(treated in Appendix B) may show a gelation transition depending on the 
magnitude of ,~ = exp(e/k n T), where 2 = Kf/K k is the ratio of the rate 
constants for a single fragmentation and coagulation reaction, and e 
represents the (Gibbs' free) energy of a single chemical bond. If ,t, is larger 
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than some )`max, calculated in (4.3), (weak bonds), gelation is suppressed. 
For )` < )'max (strong bonds) gelation occurs. For 2 ~ O or e ~ - o o  one has 
the theory of irreversible polymerization, described by Smoluchowski's 
equation. (2,4) 

We make some further comments. The solutions obtained here are valid 
for monodisperse initial conditions. In the case of more general initial 
conditions the fragmentation rate Ftj depends upon the distribution of k-mers 
over the various k-mer configurations ( k = i + j ) .  As a consequence the 
kinetic equation (1.1) with the rate constants K~j and F~j=)`KijNiNj/Ni+ j 
need not given an appropriate description of the process of reversible 
polymerization in general. Instead a microscopic rate equation should be 
constructed in terms of the concentrations ekp, where p labels the various 

0 isomeric configurations of clusters of size k, involving rate constants K~,j~ 
P and F~,jv for the formation of a (k, p)-mer out of an (i, ~t)-mer and a (j, v)- 

mer, and the break-up of a (k,p)-mer, respectively. The average fragmen- 
tation rate is then given by 

(6.1) 

while the average coagulation rate Kij retains its time-independent 
combinatoric value at all times. In the large-time limit detailed balance 
should hold: 

Fi~ eko(c~ ) = Ki~ eiu (oo ) ejv(oo ) (6.2) 

implying that eventually Fij(t ) assumes the equilibrium value )`K~jNiNJN i+j. 
As an example consider systems S 1 and S 2 initially consisting of only 

linear and only branched tetramers, respectively, as shown in Fig. 2. Both S 1 
and S 2 cannot be reached from the monodisperse distribution and the short- 
time behavior of the rate of tetramer break-up into dimers in either systems, 
Fzz(t ) e4(t ), is very different. Dimers may be produced directly from the 
linear tetramer chains, implying that the fragmentation rate F22(t ) in the 
system $1 remains finite as t ~ 0. On the other hand dimers are not among 
the fragmentation product of the branched tetramers, and the dominant 
processes of dimer production from tetramers in the system S 2 for t I 0 are 
symbolized in Fig. 2. It is readily verified that these processes yield a 
contribution to Fzz(t ) of the order of t 3 as t ~ 0. In both systems Fz2(t ) will 
approach the value predicted by equilibrium theory in the limit of large 
times. 

In our kinetic interpretation of the classical polymerization models of 
Flory and Stockmayer, we have paid special attention to the cluster size 
distribution in the post gelation stage, where the results of Flory differ from 
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Fig. 2. The dominant processes of dimer production out of tetramers for short times (t J. 0) in 
the systems $1 (only linear tetramers initially) and $2 (only branched tetramers initially). 

Stockmayer's. (2) Other postgel models, corresponding to different sol-gel or 
gel-gel interactions, may readily be constructed. Ziff  (4) and Ziff and Stelt (32) 
have suggested a model that allows sol-gel reactions, as does the Flory 
model, but where the gel may not cross-link. Other models are obtained by 
assuming weaker, or stronger, sol-gel interaction, or cross-links in the gel. A 
computer experiment in which the random bonding process of RA i units is 
simulated has been carried out by Falk and Thomas. (33) In their "rings 
allowed" model all possible bonds are allowed and have equal probability of 
being formed. In their "rings forbidden" model all possible bonds are 
allowed save those, which lead to cross-links, so that all clusters are strictly 
acyclic. Falk and Thomas show that the "rings allowed" model and Flory's 
model for the pre and postgel stage are identical, as they should, since both 
models are based on the equireactivity principle. Similarly, the "rings 
forbidden" model should correspond to the model III  of Ziff and Stell, since 
both models have the same basic assumptions. We have evidence, based on 
the exact solution for model III, that both models are indeed identical. 

Various types of clustering processes involve two different types of 
bonds, with two different bond energies. For instance, the aggregation 
process of red blood cells, called rouleau formation ~34-36) involves an 
elongation reaction with bond energy ce and (less frequently) a branching 
reaction with bond energy e b (e e < eb < 0). We have also applied the present 
theory to such more complicated cases of reversible aggregation. (37) 
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Finally some comments on critical exponents, that describe the cluster 
size distribution in the vicinity of the gel point; i.e., in the scaling limit 
k ~ oo and t ~ tc with k ~ I t - t~ t = const, one may represent ck(t ) as 

Ck(t) ~ k -~ q~(k It - tc I ~/~) (6.3) 

In the classical Flory-Stockmayer theory, and therefore also in the present 
kinetic theory, the critical exponents r and a have the typical mean field 
values r = 5/2 and o = 1/2. (3~ 

In recent years C38'39) Smoluchowski's coagulation equation has been 
modeled to account for surface interactions through the coagulation kernel 
Ki j ~ (/j),o with co = 1 - l/d, where d represents the space dimensionality of 
the system, and it was found that r = co + 3/2 and a = c o - 1 / 2 .  It is of 
interest to know whether fragmentation affects this results. A fragmentation 
kernel modeling surface interactions may be constructed as follows. 
Assuming that only those bonds are breakable which are at the surface, we 
choose instead of (2.1) a normalization of Fij proportional to (k '~ - 1). The 
detailed balance condition then leads to a fragmentation kernel of the form 
Fij=2(ij)~ where now N k is the solution of (2.4) with ( k -  1) 
replaced by (k ' ~  1). We have repeated the calculations of  (38'39) with 
fragmentation terms added to the kinetic equation, and we find that the same 
critical exponents apply for 2 > 0 as in the case of pure coagulation (2 = 0). 
The scaling function q~(x), however, becomes explicitly dependent on the 
fragmentation strength 2. Moreover we find that for sufficiently large values 
of the fragmentation strength gelation is suppressed. The detailed 
calculations leading to these results will be published elsewhere. 

A P P E N D I X  A 

In this appendix we show that the size distribution Ck(a(t)), given in 
(3.1) and (3.2) for the RAy and the AfRBg models, respectively, is indeed a 
solution of the kinetic equation (1.1) with the appropriate coagulation and 
fragmentation coefficients. We present arguments only for the RAy model. In 
the case of the AyRBg model the discussion is very similar. 

Consider first the left-hand side (LHS) of (1.1), which yields through 
(3.1) 

LHS (1.1) = d(dcJda) 

= ~c k ( k  a l a-k(---f)tl - - a /  (11) 

The rate constant Kij and Fij in the right-hand side (RHS) of (1.1) are given 
in (1.8) and (2.6). The fragmentation terms are proportional to the 
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coagulation terms on account of (2.6) and (3.1), i.e., Fijci+j= (2/A)Kijcic i. 
Thus 

1 
RHS (1.1)= [ f (1- -a)2 / (2a)  - l]-~- ~ Fuel+ j 

i+j=k  

- {1 - 2a/[f(1 - a)Z]}ck ~ Kkjc j (A2) 
j = l  

The sum involving Fii is given in (2.1); the factor in front of it equals fi/()~a) 
on account of (3.4). The sum involving K~j follows from (1.8) to be 

~_, Kkjc j = a~(f)[A ~] = f ( 1  - a) oh(f)  (a3) 

The factor in front of this sum in (A2) equals d/[ f (1  - a)2]. Inserting these 
results into (A2) demonstrates the equality of (A1) and (A2). Thus, ck(a(t)) 
as given in (3.1) is the solution of the kinetic equation (1.1) for the RAy 
model with monodisperse initial conditions. The complications arising when 
a gelation phase transition occurs are discussed in Section 5 for the RAy 
model and at the end of Appendix B for Flory's model AfRBg.  

A P P E N D I X  B 

In this appendix we discuss the time-dependent behavior of the size 
distribution in Flory's polymerization model AfRBg before, at and beyond 
the gel point. 

The Pregel Stage 

Let the extents of reaction of the A and the B groups be denoted by a 
and fl, respectively. In the AyRBg model units carry f A groups and g B 
groups, so that 

f a =  gfl= ~ (k--1)eh---= l--/~ (B1) 
k - 1  

The size distribution takes the form 

ck(a ) = NkA (a) ~(a) k 

= gk(a/g)  k- '(1 -- a)skr -- fl)sk~g) (B2) 

where sl,(f) and sk(g ) represent the numbers of unreacted A and B groups, 
respectively, with sk(f)  given in (1.7). Here a/g (=fl/f) is the probability 

822/37/3-4-4 
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that an A group (or B group) is connected to a particular B group (or A 
group) out of  a total of  g B groups (or f A groups) on another unit. The 
interpretation of the remaining factors is analogous to that given below (3.1). 

The time dependence of a(t )  is determined from the macroscopic  rate 
equations. Let [A R ] = f a  = gfl = [B R ] (which also gives the concentration of 
A - B  bonds), and [A r]  = f ( 1 -  a)  and [B F] = g ( 1 - f l ) ,  then one has 

d 
d--~ [A"] = [A el [B F] - 2[A"] (B3a) 

and hence 

d = g(1 - f l ) ( 1  - a)  - ha (B3b) 

to be solved with a ( 0 ) = f l ( 0 ) =  0. This corresponds to monodisperse initial 
conditions, as can be seen from (B2). The Boltzmann factor 2 = e x p ( e / k s  T)  
refers to the Gibbs '  free energy e of  a single A - B  bond. The solution to 
Eq. (B3b) with a(0)  = 0 reads 

a(t )  = %(1 -- e - a t ) l ( 1  -- a o f l o e - a ' )  (B4) 

where a 0 and fl0 wi th fa0  = gflo are the stat ionary solutions of  (B3b), i.e., 

a o = ( f  + g + ), - A ) / 2 f  (B5a) 

with 

A = [ ( f  + g + _ 4fg] (855) 

Without fragmentation (,~ = 0), the quantity A = I f -  g[, so that  f o r f  > g it 
is found that a 0 = g / f  and fl0 = 1, indicating that  all B groups have reacted. 
Analogous results are found f o r f  < g. Absence of fragmentat ion leads again 
to a trivial s tat ionary size distribution ek(a0), vanishing for any finite k 
value. 

The Gelat ion Transition 

The behavior of  the A f R B g  model at the gel point is completely 
analogous to that  found in the R A f  model. The size distribution ek(a ) in (B2) 
reaches a max imum at a = d k where dek (a ) /da  = 0. The limiting value d~o of 
the d k determines again the critical extent of  reaction a e : 

doo = g ( f  + g -  1)-~{1 - [ ( f -  1 ) ( g -  1)/ fg]  '/2 } = a c (B6) 

with f a  C = gflc. I f f  = 1 or g = 1 then either ac = 1 or fie = 1, implying that 
the critical extent of  reaction is only reached when all reactive groups of one 
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type have reacted. This only occurs at t = oo, so that no gelation occurs 
within a finite time. However, if f,  g > 1, then a c < 1 and tic < 1. As soon as 
a(t) > a c the sol mass M ( a )  < 1 and gelation occurs. The critical time t c is 
again determined by the solution of a(tc) = a c, and we obtain from (B4) 

t c = A -1 log [a0(1 -- flo ac)/(ao -- ac)] (B7) 

The critical time t c is only real if the stationary value a ( o o ) =  a o in (B5) is 
larger than %. This yields the following condition on the fragmentation 
strength for the occurrence of a gelation transition within a finite time: 

< J'max = (f-I- g -  1 ) - l { ( f  - 1)(g--  1 ) ( f +  g) 

+ ( f +  g - -  2 ) [ f ( f - -  1) g ( g -  I)] 1/2 } (BS) 

Thus one sees that the fragmentation effects in the ArRBg model are 
completely analogous to those found in the RAr model. The mass loss rate at 
the gel point t c for the AIRBg  model is given by 

[ l M(ac) i 

[(1 --a)(1 --fl)a]~c 
= - - f { 1  + [ f g / ( f - -  1 ) ( g -  1)]1/2 t 6(to) (a9) 

showing that at t c a macroscopic gel phase occurs in the system. 

Postgelation Stage 

In Stockmayer's picture of the postgel stage, one finds again (5.1) for 
the size distribution in the AzRBg model. The concentration of clusters is 
determined by 

/~ -- --[AF][Bf] + ,~[Af I (B10) 

where [Bf] = g ( 1 - t i c ) M ,  and the remaining concentrations are given in 
(5.3). Here/~c = 1 - f %  and gflc = f %  can be found in (B6). This leads again 
to an equation for M(t)  of the form (5.4), where a and b are now given by 

a =fac/ct  r = [ f g ( f -  1 ) ( g -  1)]-1/2 

b = g f (1  - ac)(1 - flc)/la c (B11) 

= [ f g ( f +  g - - 2 ) +  a - l ( f +  g ) ] / ( f +  g - -  1) 

Equations (5.1) and (5.6) represent again the time-dependent postgel size 
distribution ek(t ) for the AyRBg model in Stockmayer's picture. One can 
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again verify that the size distriubution (5.1) is an exact solution of the 
kinetic equation with rate coefficients (1.6) and (2.6). 

For irreversible coagulation (2 = 0) the size distribution reduces again 
to (5.7) with b given in (B1 i), and the critical time t c follows from (B7) and 
(B5-B6) by setting it = 0, i.e., 

t c = [ 2 ( g - f ) ] - ~  l o g [ f ( g -  1 ) / g ( f -  1)1 (B12) 

In the special case g = f ,  Eq. (B12) reduces to t c = [2 f ( f - -  1)] 1. 
In Flory's picture of the postgel stage the extent of reaction a (or fl) 

retains again the interpretation of the probability that an A group (or B 
group), selected at random, is bonded. As a consequence the size distribution 
ck(a ) in Flory's picture has the form (2) in the postgel stage as well, where 
a(t) is still given by (B3a,b). In these equations the concentration [B e] = 
[Bs F] + [Bg F] represents now the unreacted B groups in the sol and in the gel, 
and similarly for [.4 e] and [AR]. 

The derivation of the kinetic equation corresponding to Flory's gel 
picture for the AfRBg model proceeds along similar lines as that for the RAy 
model. The result is 

Ok=-~ ~ (Kuciej--Fuci+j)-- (Kkjckej--Fkjck+j) 
i + j = k  j = l  

- Ck(Sk(f)[Bf] + Sk(g)[Af] ) + 2Nk(~(a))k(Sk(f)[B~] + sk(g)[Af] ) (B13) 

The additional terms on the second line of (B13) represent, respectively, the 
bonding of k clusters to the gel, and the formation of k-mers due to break-up 
processes in the gel. The additional gain term contains again as a factor the 
concentration of A - B  bonds between k clusters and the gel, where A groups 
and B groups on k clusters, bonded, respectively, to B and A groups in the 
gel, are treated separately. This shows that fragmentation processes in the gel 
take place at a rate proportional to the corresponding numbers of bonds for 
the AgRBg model also. 
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